
IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 1, March, 2013
ISSN: 2320 - 8791
www.ijreat.org

1

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP(www.prdg.org)

Crawl Vulnerabilites For Detecting And Preventing

Web Application

Jayanthi V
1
, Abirami R

2
 and Brindha R

3

1, 2, 3
Computer science & Engineering

V.R.S College of Engineering & Technology

Arasur, Villupuram. 605602

ABSTRACT

Today in the field of information technology people can get

any information by just single click on web applications. Web

application plays very important role. Many organizations are

mapping their business from a room to the world with the

help of these web apps. Each web apps consist of three tier

architecture in which database is third tier. As use of web

apps increases day by day many kind of attacks also increases

on them. Some attacks are SQL INJECTION, BANNER

GRABBING, QUERY STRING & UNION. There have been

proposed vulnerability scanners but none of them are able to

detect these attacks completely. Apart from that i propose an

approach to find possibility of vulnerability on web apps and

generate report based on it.

Keywords: Vulnerability, Crawler,Scanner,Banner grabbing,

Injection attacks, Query String, Union attacks

1. INTRODUCTION

Web application facilitates us by introduced new way

where we have the facility to book our bus, railway as

well as flight tickets. We can deposit money from home

to other account.

We can buy products, submit our bills, recharge our

mobiles phones etc, just on a single click [5]. It also

saves our time and effort. Each web application consists

of three tier architecture where at first tier client submit

their request and on second tier application server

perform the logic operation according to the request.

Last tier is the database work which is use for Storing

the records of clients. So Database is most important

assets in any web application. But it is also vulnerable

for so many attacks. Some of them are SQL

INJECTION, UNION, QUERYSTRING & BANNER

GRABBING. These four attacks are Most dangerous

attack against any web application. There are many

techniques available to deal with these attacks. Where

various vulnerability scanners are used to detect the

attacks but non Provide full coverage. One major issue

with vulnerability scanner is their performance impact

on the devices they are scanning. On the one hand if we

want the scan to be able to be performed in the

background without affecting the application. On the

other hand we want to be sure that the application scan

should be through for which it is create [3].

Server Pages or‘s) and user supplied inputs become part

of the query generation process without proper

validation. As a result, the execution of these queries

might cause unexpected results such as authentication

by passing; Leaking of private information etc [7].The

lower figure shows the execution of SQL commands

inside the web application. SQL related vulnerabilities

rank among the top three vulnerabilities over the past

few years. Moreover, successful exploitations of

SQLIV have already caused significant financial loss.

An application is said to have vulnerabilities when

queries are generated using an implementation language

(e.g., Java Therefore, testing an application for SQLIV

is important for ensuring software quality. In recent

years, a number of techniques have been proposed to

address SQLIV other than testing. These include input

character filtering or input validation, static analysis

[4], runtime monitoring [2] etc. In this paper i am

proposing a technique which is effective to detect these

Vulnerabilities. If we scan the whole application before

being deployed to public by use scanner then we can

find vulnerabilities inside it. For that we crawl the

whole web application and for each page we generate

the attack payload perform the attack simulation and

then prevent them to be get executed,analyze the

response and create report based on it.

Whole paper is divided into three sections. First section

explores the description of some attack for which web

application can be vulnerable and show how it affect

my application. Second section shows an approach to

prevent these attacks and in last section show the result

of this approach.

2. DISCRIPTION OF ATTACKS

QUERY STRING ATTACK: - Query string

manipulation attack is most common method of

attacking a vulnerableweb application. Query string

attack access the database of a website through a URL.

I am showing this attack by taking an example of web

application having information of products and each

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 1, March, 2013
ISSN: 2320 - 8791
www.ijreat.org

2

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP(www.prdg.org)

product contain some id in numeric form.

Original Query

www.site.com/product.php?product-id=10

Injected Query

www.site.com/product.php?product-id=10; drop table

user—‖

Attacker append ―drop table users—―sentence with the

original query and in the effect user table resides in

database will be drop.

UNION ATTACK :- Original query is concatenated to

the injected query by using the sql key word ―UNION‘

togather information related to web apps.In UNION

attack an attacker exploits a vulnerable parameter to

change the data set returned for a given query from a

table. Attacker does this by injecting a statement of the

term: UNION SELECT (rest of injected query).

Because attacker completely controls the second

/injected query to retrieve information of apps.lets take

an example of it.

Original Query
 SELECT accounts FROM users WHERE

login==―xxxx‖ and password=‗xxxx‘

Injected Query
SELECT accounts FROM users WHERE

login=‖UNION SELECT card no. from credit cards

where acctno.=10032- - AND pass=‖

In this query database would return column

‗cardno‘foraccount 10032. By use of this kind of attack

we can alsoretrieve password of any admin account‘s

show the effect of this attack in web app like this inside

our database willbe drop. In my application I show the

effect of this query like this. Each time when attacker

fire this query thenuser table will be drop in the cause

of This attack and we will lose all user information. this

kind of attack is verydangerous for business which have

a large Amount of information related to their

customer.

SQL INJECTION: - This kind of vulnerability affects

any web application very badly. In this attack, hacker

gives theuser name and password in the query string

itself instead of the log in page and get enter into

system very easily.

Here is the example of this attack:-

Original Query

Select accountno, balance from accounts where

loginid=‟abc‟ and pwd=‟xxxxx‟

Injected Query

Select accountno, balance from accounts where

loginid=‗or 1=1;/*‗ and pwd=‗*/--‘

One show in red color is the cause of this attack. how

this affect application is shown above.

By this attack hacker can now able to enter into system

which is illegal. This is all about these four

vulnerabilities. Move on to propose work to safe web

application from these attacks.

In upper case the hacker will try to first find the user

name and then try to get the password of the user in the

user detail table by using union query.

BANNER GRABBING: - Successful banner

grabbing attack may provide server information leakage

via softwarevendor and version. This attack can be used

to determine information about services that are being

run on a computer. In computer networking term

banner typically refers to a message that a service

transmits when program connects to it. Default banners

often consist of information about a service such as the

version number.

let‘s take example of this attack:-

Original Query

www.site.com/product.php?productid=10

Injected Query

www.site.com/product.php?productid=10and

substring(@@version);

Displays Mysql 4 and a blank or error page

Text after 10 is the reason of this attack .this query will

extract detail that the database used in sql server. After

get database information attacker can revel other

authenticate information.

3. PROPOSED WORK

Proposed work to detect this kind of attack contains

some steps.

1.Create a web application.

2.Create a java crawler application to check for

possible attacks on the web application.

3.Automate the crawling process on the web

application.

4.Generate attack on application and take effect as a

result.

5.Apply prevention approach on them and finally

generate report .

http://www.site.com/product.php?product-id=10
http://www.site.com/product.php?product-id=10
http://www.site.com/product.php?product-id=10
http://www.site.com/product.php?product-id=10
http://www.site.com/product.php?product-id=10
http://www.site.com/product.php?product-id=10
http://www.site.com/product.php?productid=10
http://www.site.com/product.php?productid=10
http://www.site.com/product.php?productid=10
http://www.site.com/product.php?product-id=10
http://www.site.com/product.php?product-id=10
http://www.site.com/product.php?product-id=10

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 1, March, 2013
ISSN: 2320 - 8791
www.ijreat.org

3

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP(www.prdg.org)

4. IMPLEMENTATION DETAIL

To implement web application I use java web

application. Create local host web application with

login function. To enter in this submit user name and

password which is already created by registered user.

New user can also get register.

To implement java crawler to crawl whole web

application the basic structure will be represented in

the form of treelike below figure.

In this figure a.php is represented as a home page and

all child node of a.php are b.php, c.php, and d. php are

otherrespective pages of web application.

Scanning will perform in following way-

1. Create fifo queue with two fields URL (primary

key), STATUS

2. Analyzing front page and retrieve its target URL and

insert its entire URL in fifo queue and set status 0.

3. Update status 1 and analyzing all related url insert

them into fifo queued and set status 0.

4. Go to step 3 while status =0 else go to step5 5.

Finish

Fig1. Tree Structure of a Web application

5. PREVENTATION APPROACH

In this section I review these four kinds of attacks. For

each attack identify a pattern of attack. A pattern or

signatureof the attack is a sequence of characters that

will always appear in the url for that particular attack

type.Basic aim isto extract a signature of this attack

and then use these to prevent such attack.

I want to extract bad characters from strings.After

analysis these strings i found some signatures related to

theseattacks.

Like for union hacking to be execute there should be a

Sql Meta character ―UNION‖ using Brute force String

Matching algorithm.

Algorithm BruteForceStringMatch(T[0...n-1], P[0...m-

1])

for i ← 0 to n-m do

j ← 0

while j < m and P[j] = T[i+j] do

j++

if j = m then return i

return -1

Like wise for query string attack to be execute here

signature is (―), (;), (-), (--) and meta char ―DROP‖ For

Sqlinjection signature is ―1‖ ―—―,―-― using Longest

common subsequencealgorithm.Soif we prevent these

bad characters or symbols to be execute then we can

prevent all these attacks.

In this module we list the all bad characters,symbols

,numbers which can be add with query and when we

found any of these pattern attach with sql query that

means application is in under effect of hacking. Let

user getaware of this attack by message and generate a

message like ―Hacker Identified‖.

I want to extract bad characters from strings. After

analysis these strings i found some signatures

related to these

After prevention we generate report based on number of

successful attacks versus failure attacks of each kind.

5.1 FINAL REPORT

Final report shows number of successful failure

attempt of these vulnerabilities when they were trying

to enter into application.

Successfully prevention of these is possible by catching

their pattern of attack.

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 1, March, 2013
ISSN: 2320 - 8791
www.ijreat.org

4

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP(www.prdg.org)

6. CONCLUSION
This paper proposes an approach to scan all the pages

of web application which are vulnerable to query string

kind of attack. This helps to programmer to work and

fix only vulnerable pages and focus on only bad pages

rather than whole web application. In future we can

involve more different attack and prevent them by this

method.

REFERENCES
[1]. Yang Haixia nan zhihong ,‖A Database Security

Testing Scheme Of Web Application‖ , pp. 953-

955, 978-4244-3521.2009 IEEE.

[2]. Neha Singh , Ravendra Kumar Purwar ―Sql

Injection – A Hazard to Web Application‖ , pp 36-

40 ,june 2012 ijarcsse.

[3]. Dr.RPmahapatra and mrs.Subi khan ―Preventing

Sql Injection Attacks in Stored Procedure‖ IJCSE

survey vol no.3 june 2012 PP. 55-74

[4]. Kewei, M.muthuprasanna ―A Survey of

Vulnerability Countermeasures‖ ,pp 35-39 IJCSSE

vol.3 issue3. 2009

[5]. ―Sql injection attacks and defnce‖ don boneh white

paper pp 1-22 ,winter 2009

[6]. sangitaroy , avinashkumarsingh and

ashoksinghsairamAnalysingsql meta character and

preventing sql injection attacks using meta filter

IJASCSE vol 1, issue 1 2012 june 30 pp 1-12

[7]. KasraAmirtahmasebi, Seyed Reza A Survey of

SQL Injection Defense Mechanisms Jalalinia and

SagharKhadem, Chalmers University of

Technology, Sweden IJRREST VOL.1 ISSUE 1

JUNE 2012 PP 21-26

